Skip to main content

JSF pros and Cons

JSF was developed using MVC design pattern and is driven by Java Community Process (JCP). The advantage of JSF is that it provides a clean separation between presentation and behaviour. UI can be created by page author using reusable UI components and business logic part can be implemented using managed beans.

It’s a fact that JSF libraries like RichFaces and ICEfaces greatly add lot of components to develop thin-client rich Internet applications (RIA) in pure Java. Component libraries like RichFaces for JSF has easy integration capabilities to AJAX and speeds business application development. They also includes strong support for the skinnability of JSF applications. But after using JSF in two projects I realized that JSF has complex life cycle and takes a lot of effort to develop custom components. Apart from JDeveloper there is no other IDE which supports a rich interface for component drag and drop. Eclipse is till trying and I have not even seen one stable version. Many JSF component frameworks lack maturity, documentation, or both. JSF is fast maturing and become stable and is a step in the right direction.

Comments

Popular posts from this blog

SAAS Simple Maturity Model

There are two architectural models – commonly referred as SAAS Maturity models- that describe the transition of a service to what is called Multi-tenant efficient, highly scalable application. The SAAS Maturity model described by Microsoft has four distinct stages and is illustrated below. Another similar well-known model for SaaS-maturity is known as Forrester-model but adds another stage known as "Dynamic Business Apps-as-a-service". The three key Attributes of a SAAS Architecture: Configurability: Metadata used to configure the way the application behaves for customers Multi-tenant Efficiency : Maximizing the sharing of resources across tenants Scalability: Maximizing concurrency, resource efficiency SAAS Simple Maturity Model (Microsoft, 2006) SaaS Maturity Model (Forres

SpringBoot : Performance War

Reactive Systems are designed to address challenges posed by modern software systems - the challenges related to large number of users and high throughput. Reactive systems are expected to be highly responsive, resilient, elastic and message driven. In this article we will: Build a set of fully non-blocking REST API using SpringBoot 2.0, WebFlux and Reactive Redis. Performance test the above Reactive APIs against the traditional non-reactive APIs. The code used in this example can be downloaded from GitHub Step 1: Create a skeleton Reactive WebFlux SpringBoot project Create a SpringBoot maven project using - https://start.spring.io/ Add the following dependencies: spring-boot-starter-web spring-boot-starter-data-redis spring-webflux spring-boot-starter-data-redis-reactive Refer to the dependencies in pom.xml Step 2: Create Domain Objects The demo project uses the domain objects Customer and Account . A customer can have multiple accounts.

Web Service Framework comparison

Web Services is one of those concepts made all the more difficult to understand because of the myriad acronyms and abbreviations that are superfluous in any discussion. Covering all the concepts and standards associated with Web Services is a vast topic in itself. There are a large number of standards around Web Services. These standards define the norms of a Web Services implementation and ensure that a Web Services is accessed independently of the client platform. There are numerous frameworks available to select to build web service today. Below is the most widely used ones. Product Does it fit my need? Axis2.0 Apache Axis2 is a complete re-design and re-write of the widely used Apache Axis SOAP stack to build on the lessons learnt from Apache Axis. An advantage of Axis 2 is its support for the binding frameworks XMLBeans. Axis 2 with XMLBeans is widely